How to use Filt_Robot

1-1. Before to use Filt_Robot
[requirements]
* TCL/Tk8.4 or newer
* csh
* spectrum data in NMRView format (see the NMRPipe macros)
currently limited type of spectrum data can be used
PLEASE be careful to set axis order: ex. 3D-HNCO HN(x)-CO(y)-N15(z)
DO NOT USE additional "." in the filename of spectrum
NG: hnco.2017.01.nv, OK: hnco_2017.nv

* please place spectrum data (hnco.nv...) in matrix directory

* OpenMPI ver 1.10.x (CNTK required this version) please install it if necessary https://www.open-mpi.org/software/ompi/v1.10/

* CNTK ver. 2.0 CPU only for Linux You can download compiled binary from the Microsoft web-site (see bash_example.txt how to setup) https://cntk.ai/dllc-2.0.html

* Supported OS: RedHat,CentOS6,Ubuntu14/16 need some additional libraries to execute compiled binary

for CentOS7 yum install ld-linux.so.2

for Ubuntu14/16 sudo apt-get install tcl8.5 tk8.5 sudo apt-get install g++-multilib sudo apt-get install csh

* need 4-6GB memory... depending on the size of protein and spectrum data

!! current version does not support 32-bit Linux !!

[The easiest way to try demo data]

VirtualBox image would be useful to setup all stuffs quickly. Please download ova file From our web-page (~2.6GB). <u>http://bmrbdep.pdbj.org/en/nmr_tool_box/Filt_Robot.html</u> <u>http://bmrbdep.pdbj.org/pub/files/virtimage/UB1605F.ova</u> *** the ova file name will change *** Including Ubuntu16.04TLS and ready to start Filt_Robot All you have to do is installation of VirtualBox on your PC, and extend the ova file. (need Filt_Robot package and demo data) See the VirtualBox section on this manual.

CYANA (FLYA), NMRView (option) are also available from LA-systems and One Moon Scientific.

1-2. Full package of program and the demo data

Filt_Robot package

http://bmrbdep.pdbj.org/en/nmr_tool_box/Filt_Robot.html http://bmrbdep.pdbj.org/en/license_agreement/Download_Filt_Robot.html The whole compiled binary and related Tcl/Tk scripts are packaged in the file. Please extract it where you want to run.

BMRB FID data: bmr16647

http://bmrb.pdbj.org/ftp/pub/bmrb/timedomain/bmr16647/timedomain_data/ Ramelot et al., (2010) Solution NMR structure of SH3 domain from CPF_0587 (fragment 415-479) from Clostridium perfringens. Northeast Structural Genomics Consortium (NESG) Target CpR74A. The related PDB structure also available 2KRS: https://pdbj.org/mine/summary/2krs

NMR-Pipe scripts (including proc.com for conversion of NMR spectra in NMR-View and Sparky UCSF format):

 $http://bmrbdep.pdbj.org/pub/files/bmr16647_NMRPipe_demo_scripts2.tar.gz$

*** gz file name will change ***

- 2D $^1\mathrm{H}\ensuremath{^{-15}N}$ HSQC, $^1\mathrm{H}\ensuremath{^{-13}C}$ HSQC aliphatic and aromatic
- 3D HNCO, HNCACB, CBCA(CO)NH
- 3D HCCH-TOCSY for aliphatic, ¹⁵N-edited NOESY ¹³C-edited NOESY
 - for aliphatic and aromatic
- $1.\ cd\ CpR74A$
- 2. cd spectrum directory that you want to process
- 3. run fid.com
- 4. edit proc.com

remove comment out "#" if you want to process NMRView format data

5. run proc.com

processed NMR spectrum data (~320MB):

http://bmrbdep.pdbj.org/pub/files/bmr16647_NMRPipe_demo2.tar.gz *** gz file name will change ***

including above spectrum data in NMR-View and Sparky UCSF formats.

MagRO data-sets (~680MB):

http://bmrbdep.pdbj.org/pub/files/bmr16647_maxtrix_demo2.tar.gz including above spectrum data sets and demo data for FLYA and CYANA calculations.

VirtualBox ova file (~2.6GB)

http://bmrbdep.pdbj.org/pub/files/virtimage/UB1605F.ova

*** gz file name will change ***

Including Ubuntu16.04TLS, OpenMPI, CNTK 2.0 for CPU and ready to use Filt_Robot. [Quick demo]

- $1. \ \ If you edit run_temp_C.csh, then execute it. You will see the statup module.$
- 2. Press "Start Acs"
- 3. Type name of path for peak preparation in the entry ex) flay_test.
- 4. Press "Pick All spectra"
- 5. Press "1st Noise Filter"
- 6. Press "CNN Noise filter" (please wait for a while...10-20min)
- 7. Press "Convert xpk-> FLYA" or "xpk-> Sparky"
- 8. If you want to run FLYA, press "Export Flya files"

1-3. Other related tools BMRB converter

the scripts are useful for MagRO user ## Just go to the Filt_Robot_v.1.47.26.0K/tools/BMRB

This tool can extract assigned chemical shifts from the file in BMRB format. Please download bmrb chemical shift data in NMR-STAR 3.1 file format This tool requires Tcl/Tk8.4. or newer and can handle single chain system only. Execute scripts one by one.

09_extract_assemble.tcl bmr18876.str 10_extract_chem_star.tcl bmr18876.str 20_export_MagDB.tcl bmr18876.str

if all script file work fine, you will find "MagDB" directory. please copy MagDB into matrix directory

TALOS+

Open TALOS+ input file module and type the file name for example: talosp.tab then run TALOS+ ex) talos+ -in talosp.tab pred.tab should be placed on matrix directory

CYANA calculation using FLYA calculated chemical shifts

1. for FLYA calculation, see detail in the how to use FLYA section.

- 2. Import assigned chemical shifts calculated by FLYA Open FLYA module, then type flya directory in the top entry. press Import FLYA-->ACS restart the program
- 3. prepare NOESY peak lists and TALOS+ pred.tab (option) for example, copy *noe*_cnn.xpk in the FLYA directory to matrix directory also copy pred.tab file in matrix directory.
- 4. Open Cyana export module (see CYANA section for more detail)
- 5. set protein name, path of CYANA calculation and select CYANA version (for ver. 3.97 and 3.98, select 4.x)
- 6. press next button
- 7. press autoset
 - disable :Fix angle if you don't like to fix maximal angle. set the number of CPUs (4 is default)
- 8. run CAYNA calculation, for example;
 ~/opt/cyana ⁻3.97/cyana CALC.cya
 on Ubuntu14.04TLS using 2-Core (3.5GHz), it will take 5~10min.

[Note] CYANA can be available from LA-systems: <u>http://www.las.jp/english/products/cyana.html</u> You can purchase version 2.1. FLYA is a part of function in CYANA ver. 3.9x. Please ask Prf. Peter Güntert to provide the version after get the CYANA license. http://www.bpc.uni-frankfurt.de/guentert/wiki/index.php/FLYA

Fit_Robot (sorry for this confusing name...)

This program can be used for identification of automated ordered regions in structure ensemble and overlay fitting. Please check our web-site to download the program (free); http://bmrbdep.pdbj.org/en/nmr_tool_box/fit_robot.html

You can also find the fit_robot.exe in MAGRO_modules/bin/linux run fit_robot.exe to automatically find ordered regions and export overlaid PDB files:

fit_robot.exe final.pdb you will find final_lev_1_0.pdb (depending separation of ordered core convergence)

Export Sparky peak lists

Filt_Robot module has a function to convert xpk files into the peak list that can be loaded in Sparky.

The Sparky USCF files should be stored in matrix/Sparky

And the function requires a short text file that describes axis order of spectrum data sets: Matrix/Sparky/sparky_list.txt

## sptp axis-order							
Chsqc	$2\ 1$						
chsqc-ar	$2\ 1$						
hsqc	$1\ 2$						
hnco	$3\ 2\ 1$						
cbcaconh	$3\ 2\ 1$						
hncacb	$3\ 2\ 1$						
hccht	$3\ 1\ 2$						
n15noe	$2\; 3\; 1$						
c13noe-al	$2\; 3\; 1$						
c13noe-ar	$3\ 2\ 1$						

Press "xpk→Sparky" to begin the file conversion. The converted peak lists can be found in matrix/Sparky

For example, hnco_cnn.xpk \rightarrow hnco_cnn.list

How to use Filt_Robot interface: similar to MagRO (start-up)

2-1. How to install and update Filt_Robot

To install Filt_Robot, user can place the directory of program directory that you want (anywhere is OK), and for update just replace the old one with new one.

For example: tar xvzf Filt_Robot_v.1.42.26.06H.tar.gz Then copy run_temp_C.csh and edit it for your system.

[Important] You need to prepare spectrum data sets in NMR-View format (see the othersections) And if you want to use new data project, you have to prepare sequence file (one-letter code) as *.seq In matrix directory.

-			MagRO-NMRView Startup mo	dule				- • ×
NO GUI	Working directory	2D s	spectra					
save	CpR74A_demo/matrix	use	spec_name	file_name	thres	width	aspect	
Open Acs	c13noe_a1.nv c13noe_arom.nv cbcaconh.nv chsqc.nv chsqc_arom.nv hccht.nv hncacb.nv hnco.nv n15noe.nv nhsqc.nv		2D 1H-TOCSY1 2D 1H-TOCSY2 2D 1H-NOESY1 2D 1H-NOESY2 2D 13C/15N-filt-NOESY spectra spec_name	file_name	thres	width	aspect	
	1H-1H 15N 13C-al							
	13C-ar 13C-correction 0.0 ppm To be expired:379 days remaining]						

2-2. Initial setup of Filt_Robot

Press "Open Acs" to start Filt_Robot.

			MagRO-NMRView Startup
NO GUI	Working directory	20) spectra
6916	CpR74A_demo/matrix	use	spec_name
	c13noe_al.nv		2D 1H-TOCSY1
Open Acs	c13noe_arom.nv		2D 1H-TOCSY2
	cbcaconh.nv		2D 1H-NOESY1
	chsqc.nv		2D 1H-NOESY2
	chsqc_arom.nv		2D 13C/15N-filt-NOESY
	hccht.nv	20	spectra
	hncach ny	36	spectra

If you have not set any project before, the program will ask you to setup sequence of sample with the following popped up windows;

🗙 MAGRO Setting up new p 💷 🗙								
Add Chain	Start Setup	Close						

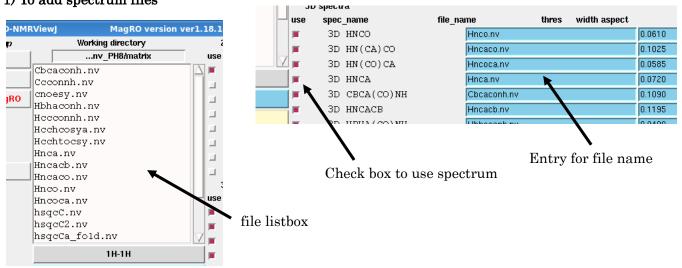
To load protein sequence file, you have to press "AddChain" then select library. For example, select Library: protein_res.lib;

🗙 MAGRO Setting up new p 💷 🗙									
Add Chain	Start Setup		Close						
Library: dna_res.lib									
Library: fo	res.lib	osya.nv							
Library: protein_res.lib									
Library: m	a_res.lib	b.nv							

Then the window will change;

🗙 MAGRO S	Setting up r	new project		_ D X
	Add Chain	Start Setup	Close	
Chain: 0 [.ib: protein_r	es.lib Resi	due begins from:	1
File:				Δ
delete				\neg

To load protein sequence file, press "File:" button. The sequence should be described in 1-let code in a text file. If you load the file, you will see the sequence in the textbox;


X MAGR	O Setting up new project	
	AddClain Start Setup	Close
Chain: 0	Lib: protein res.lib Resi	he begins from: 1
File: delete	GSSGSSGRSYEGILYKKGAFMKPWKAR GVIDLAEVEAVAPGTPTIGAPKTVDEK QWVDRIQSCLSSGPSSG	

Any space, tab and return codes will be ignored. The sequence should not be included non-standard amino acid. To finish the setting up, press "Start setup".

[Important] Current version of Filt_Robot only supports single-chain protein only. If you want to multi-chain and special residue, please contact us.

2-3. Detail of the startup window

1) To add spectrum files

The listbox on the left-side of startup window lists spectrum files populated in the working directory (in the sample case, /home/naohiro/nv_PH8/matrix)

To add the spectrum file to the file name entry, firstly activate one of the target entries, then double-click one of the spectrum file in the listbox.

If you would like to use the added spectrum file, press check-box in the left side of the target entry.

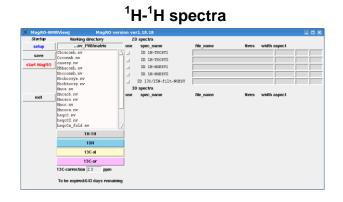
The startup module uses the following names of NMR spectrum;

name of spectra in startup	full name of spectra
2D 15N HSQC	$2D \ ^{1}H^{-15}N \ HSQC$
2D 13C HSQC-aliph	2D ¹ H- ¹³ C HSQC for allregion or apliphatic
2D 13C HSQC-aro	2D ¹ H ⁻¹³ C HSQC for aromatic
HNCO	3D HNCO
HNCACO	3D HN(CA)CO
HNCOCA	3D HN(CO)CA
HNCA	3D HNCA
CBCA(CO)NH	3D CBCA(CO)NH
HNCACB	3D HNCACB
HBHA(CO)NH	3D HBHA(CBCA)(CO)NH
CC(CO)NH	3D CC(CO)NH
H(CCCO)NH	3D H(CCCO)NH
15N NOESY	3D ¹ H- ¹⁵ N HSQC NOESY
13C NOESY	3D ¹ H- ¹³ C HSQC NOESY for all region or apliphatic
13C NOESY arom	3D ¹ H ⁻¹³ C HSQC NOESY for aromatic
HCCH-COSY	3D H(C)CH-COSY for aliphatic
HCCH-TOCSY	3D H(C)CH-TOCSY for aliphatic
CCH-TOCSY	-
	3D (H)CCH-TOCSY for aliphatic 3D H(C)CH-COSY for aromatic
HCCH-COSY arom	
HCCH-TOCSY arom	3D H(C)CH-TOCSY for aromatic

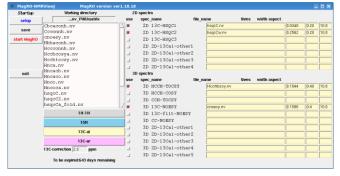
If you do not find spectrum type in the above list, you can use "other1, other2...."

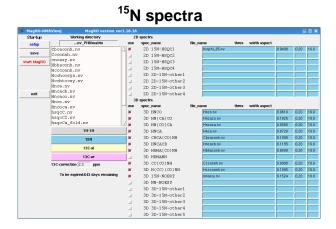
[Important] If you want to use special type of spectrum, please consult us.

2) Symbolic names for NMR spectra used in MagRO and Filt_Robot

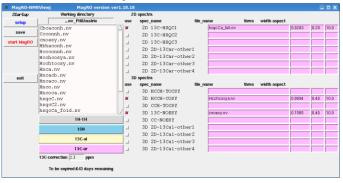

MagRO and Filt_Robot uses short-cut names of NMR spectra as shown below. They are used in control UIs of MagRO system.

Symbolic names	Spectrum names
hsqc	$2D \ ^{1}H^{-15}N \ HSDC$
chsqc	2D ¹ H ⁻¹³ C HSQC for all region or aliphatic
chsqc-ar	2D ¹ H- ¹³ C HSQC for aromatic
hnco	3D HNCO
hncaco	3D HN(CA)CO
hncoca	3D HN(CO)CA
hnca	3D HNCA
cbcaconh	3D CBCA(CO)NH
hncacb	3D HNCACB
hbhaconh	3D HBHA(CBCA)(CO)NH
hnhahb	3D HNHAHB
ccconh	3D C(CC)(CO)NH
hccconh	3D H(CC)(CO)NH
nnoesy	3D ¹ H ⁻¹⁵ N HSQC NOESY
cnoesy	3D ¹ H- ¹³ C HSQC NOESY for all region or aliphatic
cnoesy-ar	3D ¹ H ⁻¹³ C HSQC NOESY for aromatic
hcchc	3D H(C)CH-COSY for aliphatic
hccht	3D H(C)CH-TOCSY for aliphatic
ccht	3D (H)CCH-TOCSY for aliphatic
hcchc-ar	3D H(C)CH-COSY for aromatic
hccht-ar	3D H(C)CH-TOCSY for aromatic

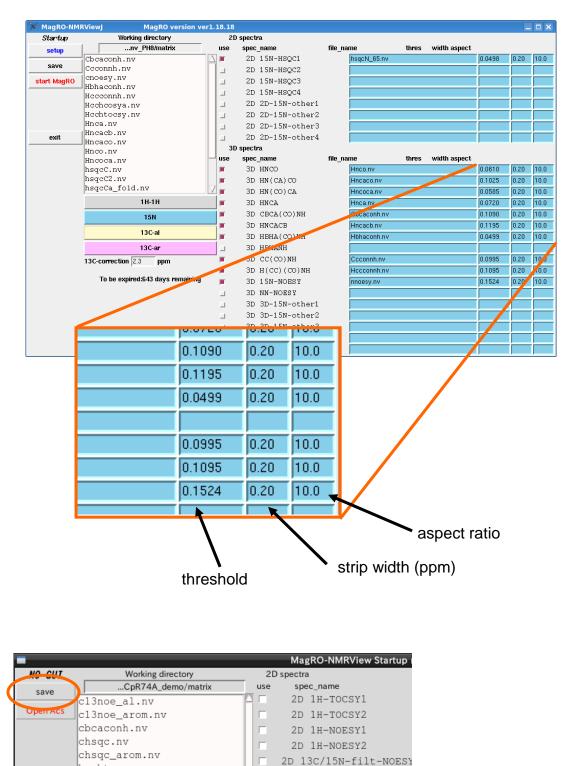

If you look at the startup up window, you will find the following buttons;


nsqcC2.nv hsqcCa_fold.nv		3
1H-1H		3
15N	F	3
13C-al		3
13C-ar		3
		3
13C-correction 2.3 ppm		3

If you press ¹⁵N, ¹³C-al and ¹³C-ar, you can switch sync-jump attribute of the startup window.



¹³C-aliphatic spectra



¹³C-aromatic spectra

3) Detail settings on startup window

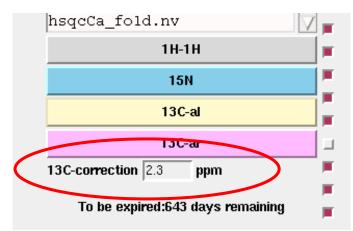
You can set threshold, width and aspect of the spectrum strip (if you want use auto-threshold controller, please leave them)

3D spectra

Press "Save" button to save the current settings.

hccht.nv

hncach nv


4) Start Filt_Robot

To start Filt_Robot, press "Open Acs" button.

			MagRO-NMRView Startup
NO GUI	Working directory	20) spectra
	CpR74A_demo/matrix	use	spec_name
	c13noe_al.nv		2D 1H-TOCSY1
Open Acs	c13noe_arom.nv		2D 1H-TOCSY2
	cbcaconh.nv		2D 1H-NOESY1
	chsqc.nv		2D 1H-NOESY2
	chsqc_arom.nv		2D 13C/15N-filt-NOES
	hccht.nv	20	
	Ibncach ny	3L) spectra

See the section for the operation of Filt_Robot.

5) offset correction of ¹³C signals (option)

If ${}^{13}C$ offsets are systematically shifted for all the spectra, user can specify the offset value correction in the entry.

This function may not modify the value of spectrum reference.

The offset correction will be applied for making the input files for the program such as TALOS and FLYA which are all sensitive to the correctness of the calculation results.

2-4. Conversion of NMRPipe format to NMRView format and axis order of spectrum

MagRO and Filt_Robot system can handle only spectrum data in NMRView format. To convert NMRPipe format into NMRView format, user can use NMRPipe. Followings are the example of macro command for the conversion

xyz2pipe -in /home/naohiro/NMRPipe/ft/n15noe_%03d.ft3 -x -verb \ | pipe2xyz -out n15noe.nv -nv -ov

If you execute the macro, you will see the following output and you will get the converted file;

555	1024	32	18	32	1	31	1	500.13	3257.16	4.80	614.00	Η
256	256	16	16	16	18	15	5	500.13	6756.76	4.80	128.00	HN
128	128	8	16	16	288	7	9	50.68	1315.79	120.12	64.00	Ν

[Important1] You will have to check axis order from the standard output. Above example showing axis order is H-HN-N

[Important2] Please be careful of the axis order for 3D HCCH-TOCSY, HCCH-COSY. Their x-dimension should be "in-direct" dimension, not direct (acquisition) dimension. Please transpose if you don't get bad results.

For the analysis with MagRO and Filt_Robot system, $^{15}\rm N$ or $^{13}\rm C$ dimension for 3D spectrum should be set Z-axis. For example;

Spec-category	Spectrum types	Axis order
15N	HNCO, HNCACB, CBCACONH	HN-C-15N
	¹⁵ N edited NOESY, H(CCCO)NH	HN-H-15N
13C	HCCH-TOCSY, ¹³ C-edited NOESY	HC-H-13C

For all above examples ¹⁵N and ¹³C dimension is set Z-axis and the indirect dimension are set Y-axis. If you find the converted spectrum data is need to be transposed, you have to execute NMRPipe macro as followings;

xyz2pipe -in /home/naohiro/NMRPipe/ft/n15noe_%03d.ft3 -x -verb \ | pipe2xyz -out n15noe.nv -nv -ov

Or Transpose command

xyz2pipe -in /home/naohiro/NMRPipe/ft/n15noe_%03d.ft3 -x -verb \ | nmrPipe -fn TL \ | pipe2xyz -out n15noe.nv -nv -ov

Please try TL, ZTL to get proper axis order. (see the examples in Pipe macro examples which can be available from our web-site)

2-5. Directories and files used for MagRO system

The project directories and files included under the matrix directory

MagDB protein_0_0_acs.db protein_0_0_seq.db	Assigned chemical shift table sequence table
backup	Backup directory
xpkfiles	Peka list (xpk file) direcotry
CYANA_results	Storing files for CYANA result analysis
000temp	directory for temprary files
lib	user customized library
BPNN	neural network tool will use

The most important directory is MagDB. The directory has the file for assigned chemical shift table (*_acs..db) and sequence table file (*_seq.db).

It is strongly recommended that user should take the backup of the directory periodically.

000temp stores several temporary files for setting window size and position. The directory can be deleted if you have some problem to display window UIs.

The directory "CYANA_results" includes temporary files which can be recreated automatically. So user can delete them if necessary.

How to Use FLYA/CYANA module with Deep Neural Network

5.1 How to use the functions from the ACS module (magenta)

1) required files for FLYA calculation

FLYA setup module will help you to generate files required for FLYA calculation. FLYA is a function implemented in CYANA which can be used for fully automated signal assignment and structure calculation. (CYANA ver. 3.75-3.98)

Recommended spectrum data sets for backbone signal assignments;

2D ¹H-¹⁵N HSQC, 3D-HNCO, 3D-HN(CA)CO, 3D-HNCACB, 3D-CBCA(CO)NH

For assignments of all signals including backbone and side-chain atoms (automated structure determination);

3D-HCCH-TOCSY for aliphatic and aromatic

3D⁻¹⁵N edited NOESY, 3D-¹³C edited NOESY for aliphatic and aromatic

It is strongly recommended that you should increase the data points for the NOE or ${}^{13}\text{C}/{}^{15}\text{N}$ dimension using zero-filling, linear prediction and non-linear sampling. The followings are the successful examples of spectrum data sets (complex);

3D HCCH-TOCSY X: 2048	Y:256	Z:256
¹⁵ N-edited NOESY X: 1024	Y:512	Z:256
¹³ C edited NOESY X: 2048	Y:512	Z:256

For the FLYA calculation, the following files are required;

CACL.cya, int.cya	Setting files for FLYA calculation.
*.seq	Sequence file
*.peaks	Peak table file

For CNN/FNN noise filter

CNTK ver. 2.0 is required. Please download CPU-only version from the Microsoft web-site:

https://cntk.ai/dllc-2.0.html

just download CNTK-2-0-Linux-64bit-CPU-Only.tar.gz

tar xvzf /home/naohiro/opt/CNTK-2-0-Linux-64bit-CPU-Only.tar.gz

Install OpenMPI ver. 1.10.x

https://www.open-mpi.org/software/ompi/v1.10/

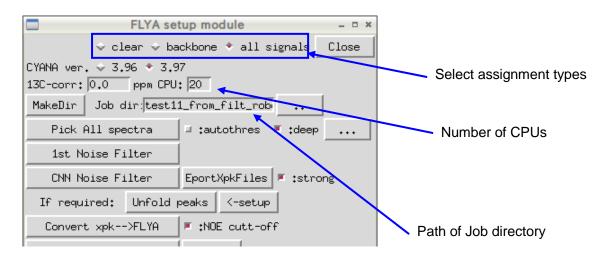
download and extract the compressed file, then install it. (If you don't know what to do please consult your system administrator), or see the bashrc_eample.txt in the Filt_Robot package.

[Important]

The accuracy of the automated assignments strongly depends on spectrum quality. If you find that the peaks in the spectra are significantly overlapped and signal missing, you will have to reconsider the plan of automated signal assignments.

[Warning]

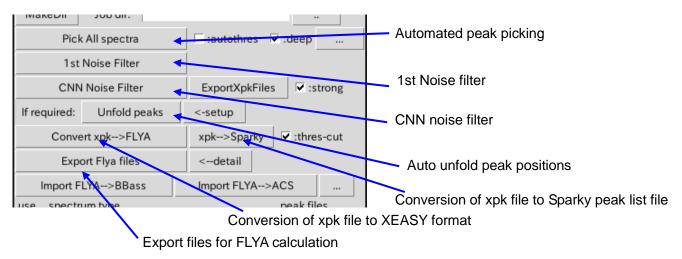
The peak lists from the spectrum folded (peaks are detected in folded/aliased/frame-shifted positions) may decrease accuracy of automated assignments. However, if you have ¹³C-HSQC for full region, the program MagRO can recover the folded peaks in HCCH-TOCSY and ¹³C-edited NOESY to unfolded position.


2) Lets start FLYA calculation

Press "Import/Export" button on the Acs module, then select "Export/Import Flya files"

🗙 MagRO	-ACS Path:	nv_fkbp	_ × _	
Plugins:	Import/Exp	ort Tools		Export Chemical shift table for BMR
Molecule:	ID: 0 Type	e: protein CS	_ID: 0	Quick setup for BMRB deposition
Chain:	Sequence			Export TALOS+ input file
Residue: Atom:	Name VAL	Sync:	Save CS	Export/Import Flya files
* H * CA * HA * CB * HB * CG1 * HG1# * CG2 * HG2#	21.057 8.694 60.642 5.219 34.409 1.753 20.898 0.825 21.476 0.896 75.141	stereo degen stereo degen		Export CYANA input files Import CYANA calculation results

F	LYA setup	module _ = ×
		bone all signals Close
	96 · 3.97 pm CPU: 4	/8
MakeDir Job di		
	-	
Pick All spec	tra	□ :autothres 🔽 :deep
1 st Noise Fil	ter	
CNN Noise Fi	lter	ExportXpkFiles 🔽 :strong
If required: Unfol	d peaks	<-setup
Convert xpk>	FLYA	xpk>Sparky
Export Flya fi	les	<detail< td=""></detail<>
Import FLYA>BE	Bass	Import FLYA>ACS
use spectrum type		peak files
hsqc	AutoPick	
🔽 chsqc	AutoPick	
🔽 chsqc-ar	AutoPick	
🗹 hnco	AutoPick	
🔽 cbcaconh	AutoPick	
🔽 hncacb	AutoPick	
✓ n15noe	AutoPick	
🔽 hccht	AutoPick	
✓ c13noe-al	AutoPick	
✓ c13noe-ar	AutoPick	


Then you will see the setting up window as shown in the left panel.

a) Firstly, you have to choice type of assignments, backbone signal only or all signals.

And select version of CYANA (FLYA). The default is 3.97 compatible for ver. 3.98.

b) Secondary, set the directory path for FLYA calculation. Directly type the path or get the directory by pressing ".." button. If you would like to create the directory, press "MakeDir" button.

c) Press "Pick All spectra" button to start automated peak picking for all spectra.

The check-button "autothres" means the quick-picker runs automated threshold control mode.

The check-button "deep" means the quick-picker runs automated threshold control mode and will set a little lower threshold. Generated peak lists will be stored in the specified directory **as** *_**auto.xpk**.

[Important] If the "autothres: OFF and "deep: OFF", you have to set spectrum threshold properly for each spectrum window. Press check-button auto-thres to run the quick-picker with automated threshold control mode. Press check-button deep which means the quick-picker will pick the peaks for **deep learning noise filter mode**. If you activate "deep: ON" you will get 20,000-80,000 peaks (depends on the spectrum quality).

d) Press "1st Noise Filter" button to start noise filtration for all peak tables.

Noise filter function will use peak lists derived from 2D ¹⁵N-HSQC and ¹³C-HSQC for aliphatic and aromatic as mask table. (hsqc_auto.xpk, chsqc_auto.xpk and chsqc-ar_auto.xpk files will be used)

The filter process is an option but strongly recommended to use with deep picking mode otherwise the too many noise peaks are detected in the peak lists. **The filtered files are labeled *_filt.xpk.**

e) CNN Noise filter [New function]

This is the new function of MagRO using deep neural networks. User has to install CNTK ver. 2.0 and OpenMPI ver. 1.10.x. CNTK has to run as "cntk" command in your Linux system. Please consult your system administrator if you do not know what to do (see the section to setup).

This function needs at least 4-6GB memory and 2-4-CPUs (2.0-3.0GHz). It will take 20-30min to prepare image data for CNTK recognition. After the automated filtration jobs you will find ***_cnn.xpk files in the job directory.** The check-button "strong" means the power level of CNN filtration. Press "ExportxpkFiles" you can run the final stage of CNN filtration jobs without image generation (It usually takes a few seconds).

[Important] The capability of the noise elimination power is around 95-99.0% depends on the spectrum quality and peak separation. Also user has to be careful as this filter eliminates a little number of real peaks (2~3%). Although FLYA and CYANA have a high tolerance to a few percent of noise and missing signals, it would be recommended user to inspect visually the filtered peak lists (if you have refined the peak lists, they should be saved as *_refine.xpk).

f) Unfold peak lists (3D ¹³C-edited NOESY, HCCH-TOCSY, HCCH-COSY only)
You can refold peaks in folded/aliased/frame-shifted position by pressing "Unfold peaks" button.
The unfolded peak lists are stored as _unfold.xpk.

[Important] To use this function, you need to prepare spectra for 2D ¹³C-HSQC for aliphatic and aromatic regions (chsqc and chsqc-ar) which have been acquired without spectrum folding in ¹³C dimension. After the automated unfolding jobs you will find *_unfold.xpk files in the job directory.

g) Conversion of xpk files to CYANA (XEASY) peak format

To convert the peak table files for FLYA calculation, press "Convert xpk-->FLYA" button. The check-button "NOE cut-off" means the convertor will filter weak peaks whose intensity is smaller than the 2.0 x threshold value (default: ON).

The priority is set for the conversion based on the following file name:

*_auto.xpk -> *_filt.xpk -> *_cnn.xpk -> *_refine.xpk -> *_unfold.xpk

If you correct or edit the peak lists manually, you have to store the peak lists as *_refine.xpk so that the auto conversion will use the files with highest priority (Be careful if you use folded peak lists).

h) Setup FLAYA calculation

Press "Export FLYA files", the program automatically prepare file for FLYA calculations such as CALC.cya, init.cya, sequence file (as protein.seq).

If you want to run FLYA for fully-automated signal assignments and structure calculation, **press "detail" then** check "Calc struct" (default:OFF).

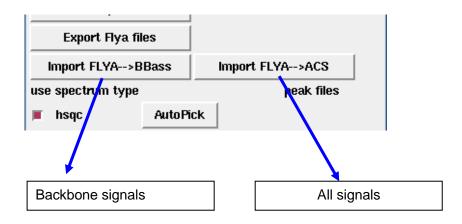
FLYA fix ch	emical shift/setup Child GUI	- 0 ×
Fixed chemical	shifts: 🔹 :none 🔹 :BB 🔹 :BB+HAHB	♦ :All
User file (*.prot):		
Export file (*.prot):	fixed.prot	
Flya mode:		Close

3) Detail of the files created by FLYA setup module

CLAC.cya,	A macro file for FLYA calculation. You can describe spectrum names, structure file name
init.cya file name, etc.	Settings for FLYA calculations such as CPU number, sequence file name, library
protein.seq	Sequence of target protein. Should be described by three letter codes
***_auto.xpk	Peak table identified by auto peak picking
***_filt.xpk	Peak table filtered by 1st Noise filter command
***_cnn.xpk	CNN/FNN filtered peaks
***_unfold.xpk	Peak table with unfolded peaks
***_refine.xpk	Peak table refined by user
***.peaks	Peak table in XEASY format

[Important] If you edit xpk file, you should overwrite ***_refine.xpk as mentioned above.

4) Execute FLYA calculation


You can start FLYA calculation on the job directory using following command. For example;

/opt/cyana3.97/cyana CALC.cya

The calculation time using 4CPUs is 5~10min for backbone signals and 60-90min for all signals.

5) Import results of FLYA calculation

After the FLYA calculation you will find an assigned chemical shift table as flya.tab.

In this table the most important parameter is "inside" on the 5th column. The values are estimated from the frequency of the assigned chemical shift value in the calculation. The FLYA module will pick up the assigned chemical shifts with the value above 80% (labeled with strong) as they are trustful enough.

Total	numbe	r of s	shift va	lues: 320	057				
Cutof	f for	extent	t	: 16.	. 00				
A 4	ו י ת		D C	C1 : C4	D	P. d. d.	1	C	
Atom	Resid	ue	Ref	Shift	Dev	Extent	inside	inref	
Ν	ARG	3	1	16.353		20.0	55.7	0.0	
Н	ARG	3		8.181		20.0	54.3	0.0	
CA	ARG	3		59. 572		20.0	99.8	0.0	strong
HA	ARG	3		3.795		20.0	99.7	0.0	strong
CB	ARG	3		29.085		20.0	99.7	0.0	strong

To import the results of FLYA calculation for backbone signals, press "Import FLYA->BBass" button and for all signals press "Import FLYA-->ACS" button. Then please restart the while program.

After the import, the program will overwrite the assigned chemical shifts in assign_NN.txt file for backbone signals and ACS table, MagDB/protein_0_0_acs.db file, for all signals, respectively.

[Important] The assigned chemical shifts in assign_NN.txt and MagDB/protein_0_0_acs.db will be overwritten with imported values. Please make sure to take backup of the files before do this job.

How to use VirtualBox for Filt_Robot

Please download VirtualBox in your OS from the following site: <u>https://www.virtualbox.org/wiki/Downloads</u>

The recommended version is 5.1.18 (tested on Windows7, Windows10, Ubuntu14/16.04LTS and MacOSX ver.10.7-11)

Also download extension-pack corresponding to the VirtualBox version.

Install the virtualbox first, then install the extension pack.

2. Setting VirtualBox

Recommended settings:

Disable automated update (VirtualBox may not stable sometime...not true the newer the better) Set the "Host key" for virtual machine (for example: alt+shift)

3. restore Ubuntu image

Download ova file from our web-page (~2.6GB) From the main-menu of VirtualBox select import appriance, then select the downloaded ova file. Extract the image (may require 20GB space in your storage)

4. Start the Ubuntu virtual machine

Recommended settings:

2-CPU, 4-6GB memory
Set the Shared folder (make the directory for data sharing)
For example (i:/ShareVB)
Set the Shared folder for ram-disk (option: not necessary)
This may store exported grayscale images for checking how the CNN recognizes the peak images.

Username: nmruser Password: protein

[important] Please change the password that you want immediately.

5. Prepare demo data

Please download demo data and Filt_Robot package from our web-page. Then place it on shared folder (ex: i:/ShareVB/)

cd /media/sf_ShareVB tar xvzf bmr16647_matrix_demo.tar.gz tar xvzf Filt_Robot_v.1.42.76.0K.tar.gz

[Important] Please change keyboard mapping as the default state is set at JP109. For the operation of Filt_Robot, see the page for how to use Filt_Robot.